翻訳と辞書
Words near each other
・ Kranked
・ Krankenhaus?
・ Krankhaus
・ Krankschaft
・ Kranky
・ Krameria
・ Krameria bicolor
・ Krameria cistoidea
・ Krameria erecta
・ Krameria ixine
・ Krameria lappacea
・ Kramers (crater)
・ Kramers Ergot
・ Kramers F.C.
・ Kramers theorem
Kramers' law
・ Kramers' law (disambiguation)
・ Kramers' opacity law
・ Kramersmolen, Goutum
・ Kramerspitz
・ Kramers–Heisenberg formula
・ Kramers–Kronig relations
・ Kramers–Wannier duality
・ Kramfors
・ Kramfors Municipality
・ Kramfors-Alliansen
・ Kramfors-Alliansen Fotboll
・ Kramgasse
・ Kramgoa låtar 10
・ Kramgoa låtar 11


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kramers' law : ウィキペディア英語版
Kramers' law

Kramers' law is a formula for the spectral distribution of X-rays produced by an electron hitting a solid target. The formula concerns only bremsstrahlung radiation, not the element specific characteristic radiation. It is named after its discoverer, the Dutch physicist Hendrik Anthony Kramers.
The formula for Kramers' law is usually given as the distribution of intensity (photon count) I against the wavelength \lambda of the emitted radiation:
:I(\lambda) d\lambda = K \left( \frac d\lambda
The constant ''K'' is proportional to the atomic number of the target element, and \lambda_ is the minimum wavelength given by the Duane–Hunt law.
The intensity described above is a particle flux and not an energy flux as can be seen by the fact that the
integral over values from \lambda_ to \infty is infinite. However, the
integral of the energy flux is finite.
To obtain a simple expression for the energy flux, first change variables from \lambda (the wavelength) to
\omega (the angular frequency) using \lambda=2\pi c/\omega and also using
\tilde I(\omega)=I(\lambda)\frac. Now \tilde I(\omega) is that quantity which is integrated over \omega from 0 to \omega_ to get the total number (still infinite) of photons, where \omega_=2\pi c/\lambda_:
:\tilde I(\omega)=\frac\left( \frac-1\right)
The energy flux, which we will call \psi(\omega) (but which may also be referred to as the "intensity" in conflict with the above name of I(\lambda)) is obtained by multiplying the above \tilde I by the energy \hbar\omega:
:\psi(\omega)=\frac(\hbar\omega_-\hbar\omega)
for \omega \le \omega_
:\psi(\omega)=0
for \omega\ge \omega_.
It is a linear function that is zero at the maximum energy \hbar\omega_.
== References ==



抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kramers' law」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.